

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE COMPUTER SIMULATION REPORT

(Revised)

Rendered to: VEKA INC.

SERIES/MODEL: SH93WW Tilt Single Hung

Report Number:	A3613.02-116-45
Original Report Date:	09/21/10
Expiration Date:	09/20/14
Revised Report Date:	11/11/10

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

NFRC U-FACTOR, SHGC, VT, & CONDENSATION RESISTANCE <u>COMPUTER SIMULATION REPORT</u>

(Revised)

Rendered to: VEKA INC. 100 Veka Drive Fombell, PA 16123

Report Number:	A3613.02-116-45
Simulation Date:	09/20/10
Original Report Date:	09/21/10
Expiration Date:	09/20/14
Revised Report Date:	11/11/10

Project Summary:

Architectural Testing, Inc. was contracted to perform U-Factor, Solar Heat Gain Coefficient, Visible Transmittance, and Condensation Resistance* computer simulations in accordance with the National Fenestration Rating Council (NFRC). The products were evaluated in full compliance with NFRC requirements to the standards listed below.

*NFRC's Condensation Resistance rating is NOT equivalent to a Condensation Resistance Factor (CRF) determined in accordance with AAMA 1503.

Standards:

NFRC 100-2010:	Procedure for Determining Fenestration Product U-Factors	
NFRC 200-2010:	Procedure for Determining Fenestration Product Solar Heat Gain	
	Coefficient and Visible Transmittance at Normal Incidence	
NFRC 500-2010:	Procedure for Determining Fenestration Product Condensation	
	Resistance Values	

Software:

Frame and Edge Modeling:	THERM 5.2.14
Center-of-Glass Modeling:	WINDOW 5.2.17
Total Product Calculations:	WINDOW 5.2.17
Spectral Data Library:	17.5

Simulations Specimen Description:

Series/Model:	SH93WW Tilt Single Hung	
Туре:	Vertical Slider, Single Hung	
Frame Material:	VI Vinyl w/ Reinforcement - Interlock	
Sash Material:	VI Vinyl w/ Reinforcement - Interlock	
Standard Size:	1200mm x 1500mm	

130 Derry Court York, PA 17406-8405 phone: 717-764-7700 fax: 717-764-4129 www.archtest.com

Technical Interpretations:

None

Modeling Assumptions:

- 1) To prevent air infiltration, tape was applied to all interior sash crack locations.
- 2) Options #1 & #2 were simulated with low density foam (EPS) in the meeting rails.
- 3) Options #3 #8 were simulated with aluminum reinforcement in the meeting rails.

Specialty Products Table:

The specialty products method allow the manufacturer to determine the overall product SHGC and VT for any glazing option. The center of glass SHGC and/or VT must be determined using WINDOW 5.2. The method gives overall product SHGC and VT indexed on center of glass properties. All values used in the calculations are truncated to six decimal place precision.

	No Dividers	Dividers < 1	Dividers > 1
SHGC0	0.003663	0.006403	0.008986
SHGC1	0.780063	0.698526	0.621671
VT0	0.000000	0.000000	0.000000
VT1	0.776400	0.692123	0.612684
SHGC = SHGC0 + SHGCc (SHGC1 - SHGC0)			

SHGC = SHGC0 + SHGCc (SHGC1 - SHGC0)VT = VT0 + VTc (VT1 - VT0)

Validation Matrix:

The following products are part of a validation matrix. Only one is required for validation

Product Line	Report Number
None	-

Spacer Option Description

	Sealant		
Spacer Type	Primary	Secondary	Desiccant
GED Ultra Intercept Spacer	Butyl Rubber	Butyl Rubber	Yes

Grid Option Description

Grid Size	Grid Type	Grid Pattern
None		

Reinforcement Option Description

Location	Material
Interlock	Aluminum

Gas Filling Technique Description

Fill Type	Method
90% Argon	Single Probe Timed
90% Krypton	Dual Probe w/ Concentration Sensor

Edge-of-Glass Construction

Interior Condition	Foam weatherstrip between frame/sash leg and glass
Exterior Condition	PVC glazing bead against glass

Weatherstripping

Туре	Quantity	Location
Finpile	3 rows	Operable stiles
Finpile	2 rows	Keeper stile, bottom rail
Finpile	1 row	Lock stile, sill
Hollow vinyl bulb gasket	1 row	Bottom rail

Frame/Sash Materials Finish

Interior	Vinyl
Exterior	Vinyl

NFRC 100/200/500 Summary Sheet SH93WW Tilt Single Hung

			-			~ = = > •		i ni Singi	e mang				
D	Pane Thickness 1	Gap Width 1	Pane Thickness 2	Gap Width 2	Pane Thickness 3	Gap Width 3	Pane Thickness 4	Gap Fill	Low-e (Surface#)		Tint	Spacer	Grid Type
				Solar	Heat G	lain Co	oefficie	nt (SHGC)	Visible Transmitta	nce (V]	Г)	Conder	isation
		J-Facto	or		Gri	ds (None	/ <1 / >=1))	Grids (None / <1 / >=1)		Resistance		
1	EPS F	OAM:	E366 /	ARG /	CL (DS	5/DS) 3	/4''					-	
	0.117	0.500	0.117					ARG90	0.022(#2)		CL	SU-D	Ν
	U-Facto	r	0.28	SHGC ((N)			0.21	VT (N)	0.50		CR	59
2	EPS F	OAM:	E366 /	ARG /	CL / A	RG / E.	366 (DS	S/DS/DS) 1-	-1/4"				
	0.117	0.438	0.117	0.438	0.117			ARG90	0.022(#2) / 0.022(#	<i>‡</i> 5)	CL	SU-D	Ν
	U-Facto		0.18	SHGC (0.19	VT (N)	0.36		CR	71
3	E366 /	ARG /	CL (D	S/DS)	3/4"								
	0.117	0.500	0.117					ARG90	0.022(#2)		CL	SU-D	Ν
	U-Facto		0.28	SHGC (· /			0.21	VT (N)	0.50		CR	58
4	E366 /	ARG /	CL/A	ARG / E	2366 (D	S/DS/I	DS) 1"						
	0.117	0.313	0.117	0.313	0.117			ARG90	0.022(#2) / 0.022(#	#5)	CL	SU-D	Ν
	U-Facto		0.22	SHGC (0.19	VT (N)	0.36		CR	53
5	E366 /			ARG / E	,	S/DS/I	DS) 1-1/	/4"	ſ				
	0.117	0.438	0.117	0.438	0.117			ARG90	0.022(#2) / 0.022(#	#5)	CL	SU-D	Ν
	U-Facto		0.19	SHGC (0.19	VT (N)	0.36		CR	70
6				KRY / E	,	S/DS/I	DS) 1-1/	/4"					
	0.117	0.438	0.117	0.438	0.117			KRY90	0.022(#2) / 0.022(#	#5)	CL	SU-D	Ν
	U-Facto		0.17	SHGC (11/ 50		0.19	VT (N)	0.36		CR	71
7			r	-			, 	/DS/DS/DS	,				
	0.117	0.292	0.117	0.292	0.117	0.292	0.117	KRY90	0.022(#2) / 0.022(#		CL	SU-D	N
	U-Facto		0.17	SHGC (0.17	VT (N)	0.33		CR	71
8			-				,	S/DS/DS/D	<i>,</i>			<u>г</u>	
	0.117	0.292			0.117	0.292	0.117	KRY90	0.022(#2) / 0.022(#5) / 0.		CL		N
	U-Facto		0.15	SHGC (· /			0.16	VT (N)	0.26		CR	71
			1			-	,	S/DS/DS/D			~-		
	0.117					0.292	0.117	KRY90	0.022(#2) / 0.022(#4) / 0.4	× /		SU-D	N
	U-Facto	r	0.15	SHGC ((N)			0.15	VT (N)	0.26		CR	71

The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.

Ratings values included in this report are for submittals to an NFRC-licensed IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes. The ratings values were rounded in accordance to NFRC 601, NFRC Unit and Measurement Policy.

Architectural Testing is an NFRC accredited simulation laboratory and all simulations were conducted in full compliance with NFRC approved procedures and specifications. The NFRC procedure requires that the computational results be verified through actual test results.

Detailed drawings, simulation data files, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of four years from the original test date. At the end of this retention period, such materials shall be discarded without notice and the service life of this report will expire. Results obtained are simulated values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the product simulated. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.:

SIMULATED BY:

Tric Barilar

Eric A. Barilar Simulation Technician

REVIEWED BY:

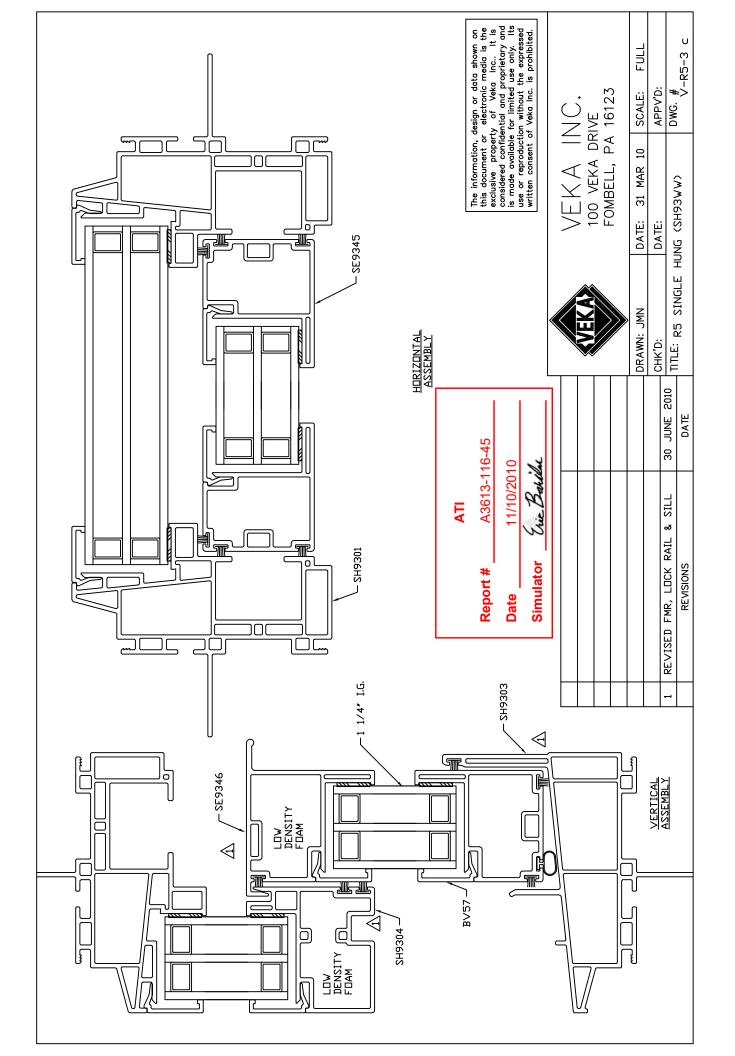
Kristen L. Livelsberger

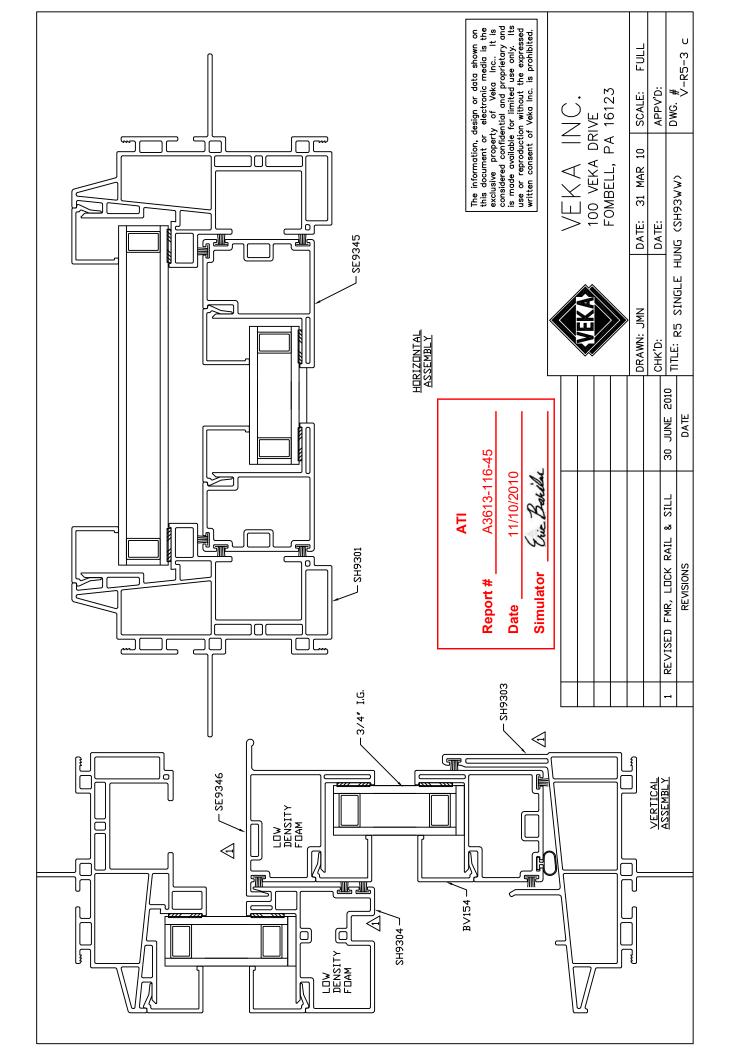
Kristen L. Livelsberger Senior Simulation Technician Simulator-In-Responsible-Charge

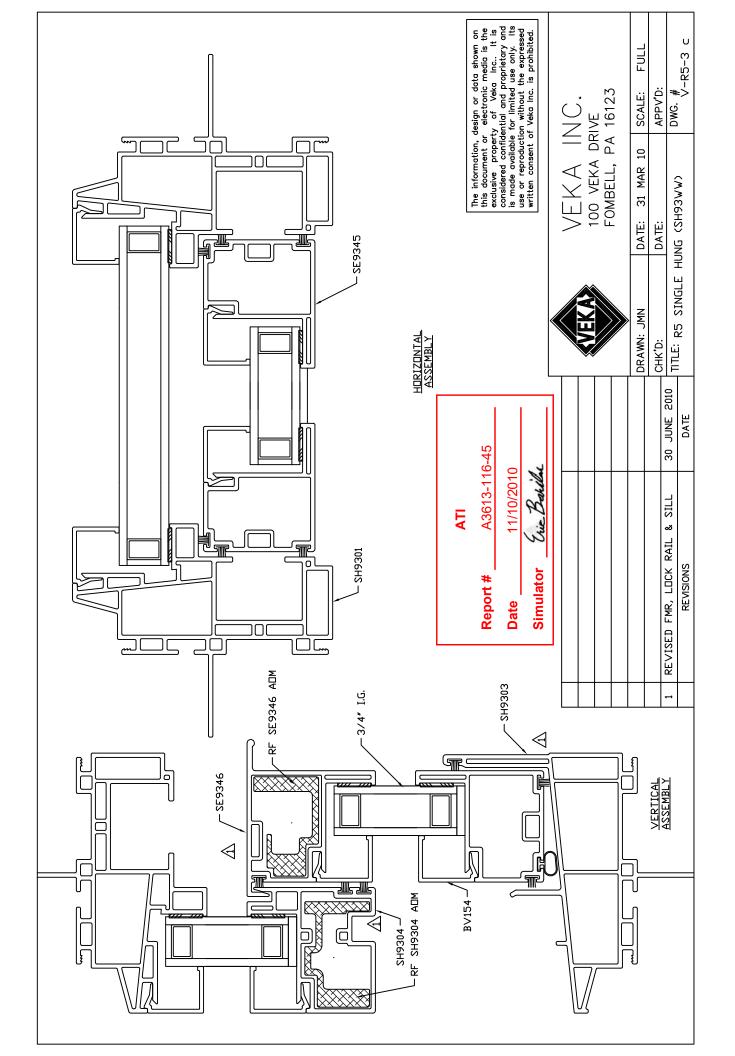
EAB:eab A3613.02-116-45

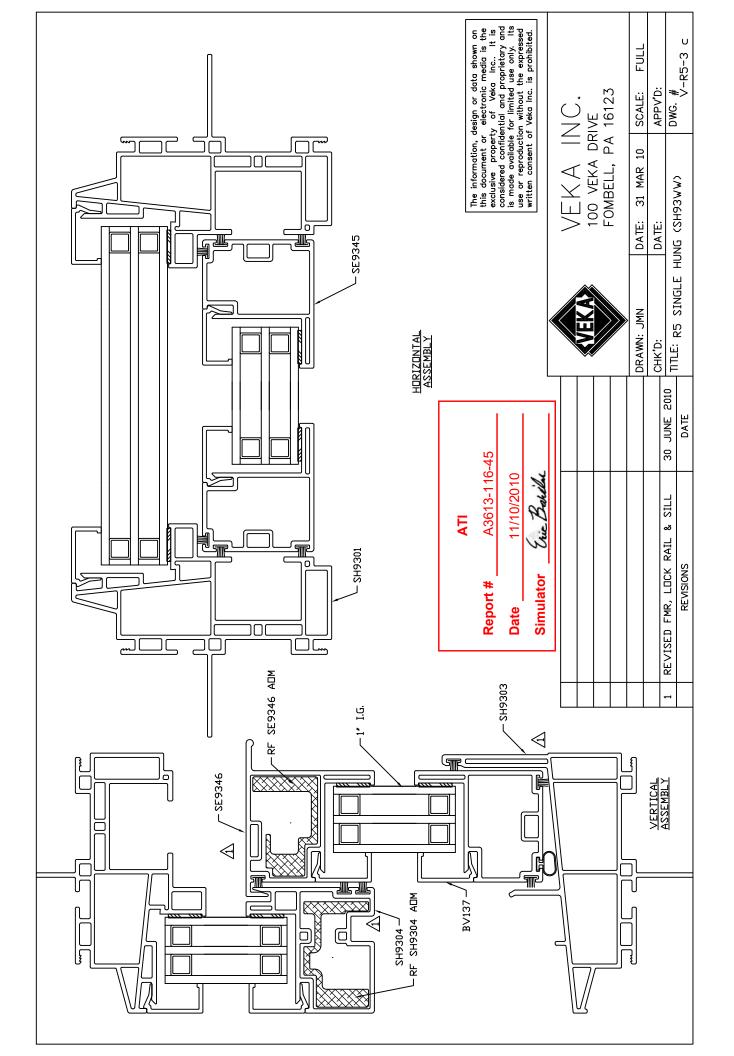
Attachments (pages):This report is complete only when all attachments listed are included.Appendix A: Drawings and Bills of Material (14)

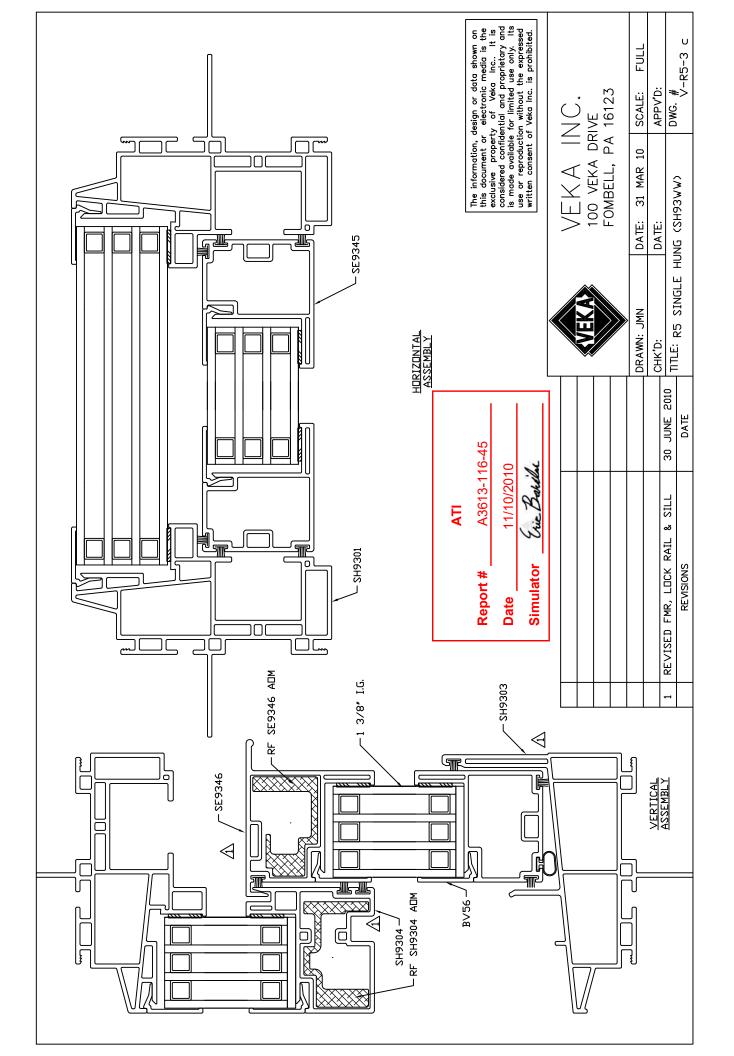
Revision Log

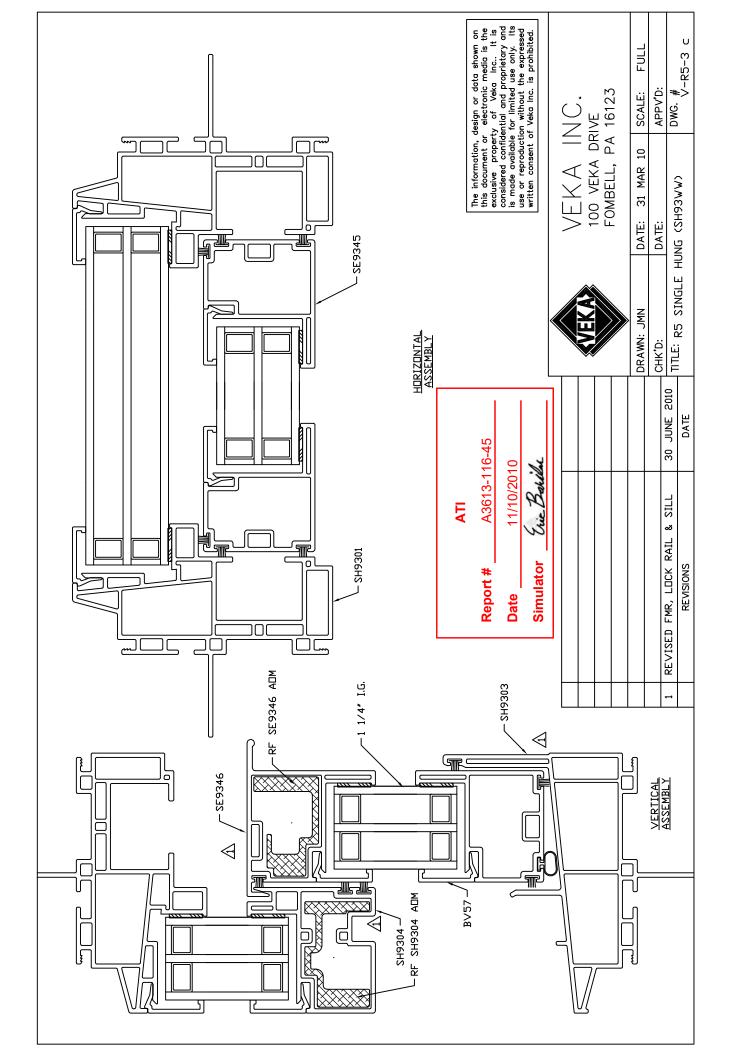

Rev. #	Date	Page(s)	Revision(s)
.01R0	9/21/2010	All	Original report issue
.02R0	11/11/2010	All	Options #3-8 added

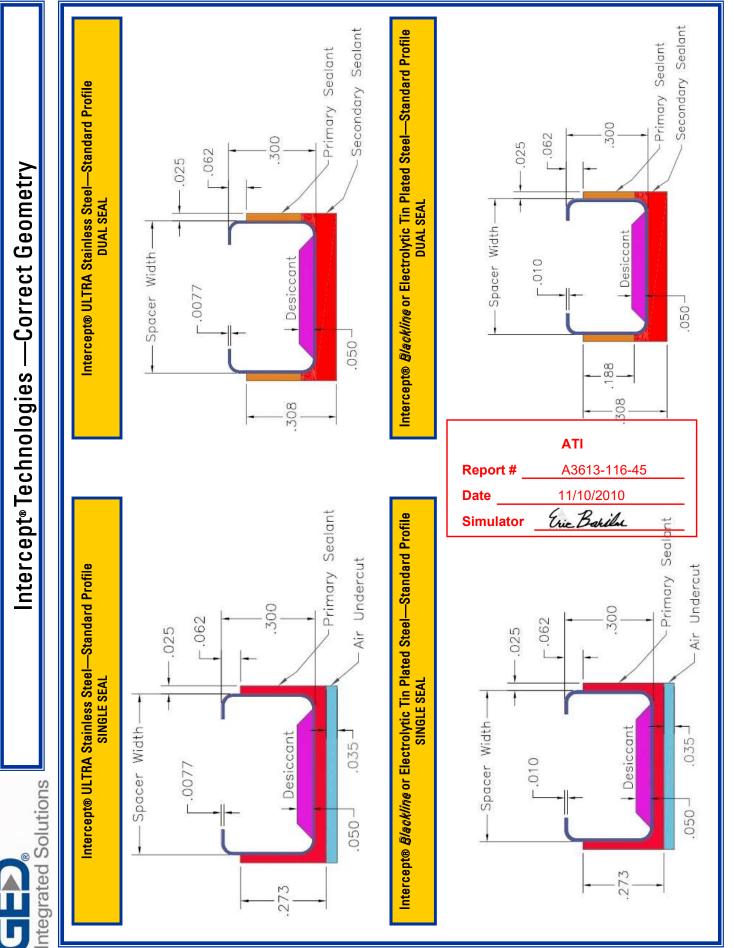

This report produced from controlled document template ATI 00037, Revised 08/31/2009.




All drawings and Bills of Material used to simulate this product are enclosed in this Appendix







GED Integrated Solutions, Inc., 9280 Dutton Drive, Twinsburg, OH 44087 330.963.5401 Fax: 330.425.8741 www.gedusa.com GEDUSA®

Product Information

Intercept® ULTRA Simulation Model

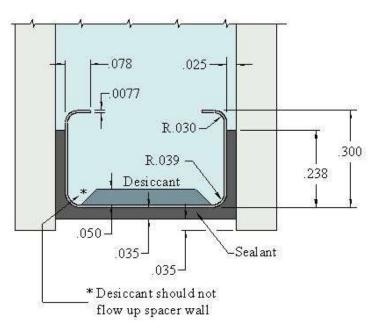
For More Information, Contact Your GED Sales Manager

GED Integrated Solutions 9280 Dutton Drive Twinsburg, OH 44087-1967

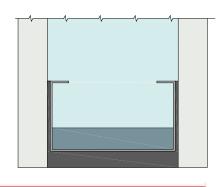
Telephone: 330.963.5401 Fax: 330.963.0584 www.gedusa.com

For THERM

- ✓ Spacer wall thickness: ULTRA material = 0.0077" Blackline material = 0.0077"
- ✓ Thermal conductivity: ULTRA material = 13.63 W/m⁰K Blackline material = 13.63 W/m⁰K


 $Desiccant = 0.29 W/m^{o}K$

Sealant = $0.24 \text{ W/m}^{\circ}\text{K}$


- \checkmark Spacer should be below sight line
- \checkmark All dimensions in inches

	ATI
Report #	A3613-116-45
Date	11/10/2010
Simulator	Eric Barilar

Accurate Geometry

Inaccurate Geometry

Architectural Testing, Inc.			
Report #	A3613		
Date	9/21/2010		
Simulator _	bie Suther		

